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Communication Over Individual Channels
Yuval Lomnitz and Meir Feder, Fellow, IEEE

Abstract—A communication problem in considered, where no
mathematical model is specified for the channel. The achievable
rates are determined as a function of the channel input and output
sequences known a-posteriori, without assuming any a-priori re-
lation between them. For discrete channels the empirical mutual
information between the input and output sequences is shown to
be achievable, while for continuous channels the achievable rate is
based on the empirical correlation between the sequences. A rate-
adaptive scheme employing feedback which achieves these rates
asymptotically with a guaranteed reliability, without prior knowl-
edge of the channel behavior, is presented.

Index Terms—Channel uncertainty, communication, feedback
communication, unknown channels, random coding, rateless
coding.

I. INTRODUCTION

C OMMUNICATION over unknown channels is tradition-
ally dealt with by using the framework of compound

channels and arbitrarily varying channels [1]. In this frame-
work, a statistical model of the channel is given, up to some
unknown parameters or up to an unknown sequence of channel
states, yet robust communication is required for all possible
settings of these unknown parameters. This approach enables
the design of robust communication systems; however there
are two disadvantages in this setting. First, the resulting rates
are often pessimistic, as they are tuned to the worst possible
channel behavior. For many cases of interest, the compound or
arbitrarily varying channel capacity may be zero, for example
when there are some channels with zero capacity in the family.
Second, a statistical model of the channel, defining the distri-
bution of the output as a function of the input and the unknown
parameters, is required, and assumed to be fully known.
A different communication model which overcomes the first

issue was presented by Shayevitz and Feder [2], where the
problem of communicating over a channel with an individual,
predetermined noise sequence, which is unknown to the sender
and receiver, was considered. Specifically, consider the simple
example [3] of a binary channel where the
error sequence can be any arbitrary unknown sequence.
Although the traditional capacity of this channel is zero, using
perfect feedback and common randomness, communication
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was shown to be possible at a rate approaching ,
i.e., the capacity of the binary symmetric channel (BSC) with
cross-over probability , where is the binary entropy
function and is the relative number of ‘1’-s in . The main
idea is that although the noise sequence is unknown, if the
rate can be adapted, one can opportunistically increase the rate
when the channel is empirically “less noisy”. Subsequently the
authors extended the results to modulo-additive channels and
adversary noise sequences [2]. The concept was further gener-
alized by Eswaran et al. [4] to include general discrete channels
with an individual state sequence, where they showed that the
mutual information of an effective “state averaged channel”
can be attained. While this model of communication avoids
worst case assumptions by using feedback, it still requires the
channel model to be mathematically specified and known.
In this paper we take this model one step further. We consider

a channel where no specific probabilistic or mathematical rela-
tion between the input and the output is assumed. We term this
channel an individual channel. In order to define positive com-
munication rates without assumptions on the channel, we char-
acterize the achievable rate using the specific input and output
sequences. When there is a feedback link where the channel
output or other information from the decoder can be sent back to
the encoder, the rate of transmission is adapted to the empirical
channel so that a small error probability is always guaranteed.
Without feedback the rate of transmission cannot be matched to
the quality of the channel so outage may occur.
As an example suppose the transmitter sends the input sym-

bols . For any input the channel outputs
a value in a way which is unknown to the encoder and
decoder and may be adversarial. We may imagine that a demon
is determining the channel output. Using feedback, can be
sent back to the encoder. Can we make any guarantee on the
communication rate? Certainly, one cannot make any a-priori
guarantee, since may be unrelated to . But as we will show
here, one can guarantee a high rate if the input and output se-
quences, observed a-posteriori, have a good correlation. There
is a system with feedback that adapts the communication rate to
a value approaching , where is
an empirical measure of the effective SNR in the link between
and , and is the empirical correlation factor. This system

guarantees a small probability of error, without assuming any
a-priori relation between the channel input and output.
We consider two classes of individual channels: discrete input

and output channels and continuous real valued input and output
channels, and two communication models: fixed rate (not re-
quiring feedback) and adaptive rate (requiring feedback). In all
cases we assume unlimited common randomness exists. The
case of feedback is of higher interest, since by adapting the rate,
outage is avoided. The case of fixed rate is used as an inter-
mediate step, but the results are interesting since they can be
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used for analysis of semi-probabilistic models. The main re-
sult is that with a small amount of feedback, a communica-
tion at a rate close to the empirical mutual information (or its
Gaussian equivalent for continuous channels) can be achieved,
without any prior knowledge, or assumptions, about the channel
structure.
The paper is organized as follows: in Section II we give

a high level overview of the results. In Section III we define
the model and notation. Section IV deals with communication
without feedback where the results pertaining to discrete and
continuous case are formalized and proven, and the choice of
the rate function and the Gaussian prior for the continuous case
is justified. Section V deals with the case where feedback is
present. In this section we state the main result and the adaptive
rate scheme that achieves it, and delay the proof to Section VI.
Here, the error probability and the achieved rate are analyzed
and bounded. Section VII gives several examples, Section VIII
is dedicated to comments and Section IX highlights areas for
further study.

II. OVERVIEW OF THE MAIN RESULTS

We start with a high level overview of the definitions and re-
sults. The definitions below are conceptual rather than accurate,
and detailed definitions follow in the next sections.
A rate function is a function of

the specific input and output sequences. Roughly speaking, the
rate function represents an empirical “channel capacity”. In the
non-adaptive case, information is transmitted at a constant rate
. We expect the message to be received with an arbitrarily

small error probability whenever meets or exceeds the
rate of transmission, i.e., whenever . If this can
be guaranteed for every where , we say
that is achievable. If then we consider
the channel to be in outage and no guarantee is made on the error
probability.
In the rate adaptive case, we would like the system to adapt

its transmission rate using feedback, such that data at a
rate would be transmitted and decoded
with an arbitrarily small probability of error, for every .
We allow excluding from this guarantee a small set of input
sequences . If this can be done, we say that is adaptively
achievable. Note that the fact that does
not lead to outage in this case since the system controls the
transmission rate, and keeps the guaranteed reliability for all
sequences. Roughly speaking, this means that in any instance
of the system operation, where a specific was the input and
a specific was the output, the communication rate had been
at least . Note that we do not assume any relation
between and and the only statistical assumptions are related
to the common randomness. We consider the rate and error
probability conditioned on a specific input and output, where
the error probability is averaged over common randomness.
To make the concept clear, a trivial example of a rate

function for a binary input—binary output channel is
, i.e., iff the output is

identical to the input. To attain this rate function non-adap-
tively, one would simply transmit the message un-coded, at

a rate . If the channel output happened to equal the
input, the communication had succeeded. If it happened to be
different, and thus no guarantee was made.
In a certain sense, the choice of rate functions is arbitrary:

for any pair of encoder and decoder, we can tailor a function
as a function equaling the transmitted rate when-

ever the error probability given the two sequences (averaged
over messages and the common randomness) is sufficiently
small, and 0 otherwise. However it is clear that there are certain
rates which cannot be exceeded uniformly. Our interest will
focus on simple functions of the input and output, and specif-
ically in this paper we focus on functions of the instantaneous
(zero order) empirical statistics. Extension to higher order
models seems technical.
For the discrete channel we show that a rate

(1)

is asymptotically achievable for large block length ,
where denotes the empirical mutual information [5] (see
definition in Section III-B, and Theorems 1, 3). This pertains to
both fixed rate and adaptive rate systems according to the defi-
nitions above. For the fixed rate case this roughly means that it
is possible to design an encoder and a decoder such that when

, the message will be decoded correctly with high
probability. For the adaptive case, this means that with feed-
back, it is possible to design a system inwhich the rate is adapted
to achieve and the error probability is small at all
times. All the inequalities above are up to asymptotically van-
ishing constants.
For the continuous (real valued) channel we show that a rate

(2)

is asymptotically achievable (in the fixed-rate and adaptive rate
senses), where is the empirical correlation factor between the
input and output sequences (see Theorems 2, 4). We define the
empirical correlation factor in a slightly non standard way as

(that is, without subtracting the mean). This is done
only to simplify definitions and derivations, and similar claims
can be made using the correlation factor defined in the standard
way. Note that is the mutual information between
two jointly Gaussian random variables with a correlation factor
. Although the result regarding the continuous case is less tight,
we show that this is the best achievable rate function that can be
defined by second order moments, and is tight for the additive
white Gaussian noise (AWGN) channel with signal power
and noise power : for this channel there-
fore . This rate function (2) can be also
formulated as , in analogy to the familiar ex-
pression for the AWGN capacity (see Section VII-D).
In all achievability results, we specify the rate function to-

gether with the set of input distributions for which the result
holds. The reason is that the rate functions are a function of
the channel input, which is determined by the scheme itself.
This is an opening for possible falsity—the encoder may choose
sequences for which the rate is attained more easily. For ex-
ample, by setting one can attain the results above in a
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void way, since the rate function will always be . We circum-
vent this difficulty by constraining the input distribution. Dif-
ferent from classical results in information theory, we do not
use the input distribution only as a means to show the existence
of good codes; taking advantage of the common randomness we
require the encoder to emit input symbols that are random and
distributed according to a defined prior (in the current paper we
assume i.i.d. distribution). This definition breaks the circular de-
pendence that might have been created, by specifying the input
behavior together with the rate function. Specifically, in the dis-
crete case, (1) is achievable with any i.i.d. input distribution, and
in the continuous case (2) is achievable for an i.i.d. Gaussian
input. Note that these results hold under the theoretical assump-
tion that one may have access to a random variable of any de-
sired distribution, which is in some cases un-feasible to generate
in an exact manner—see discussion in Section VIII-F.
As will be seen, we achieve these rates by random coding

and universal decoders. For the case of feedback we use iterated
instances of rateless coding, i.e., we encode a fixed number of
bits and the decision time depends on the channel. Although the
theorems are stated in asymptotical terms, explicit expressions
for rates guaranteed by the scheme for finite block lengths are
shown in the proofs. With a small modification, the scheme
is able to operate asymptotically with “zero rate” feedback
(meaning any positive capacity of the feedback channel suf-
fices). A similar but slightly more complicated scheme was
used by Eswaran et al. [4] (see a comparison in the Appendix).
The differences between the current framework and related
models such as the arbitrarily varying channel (AVC) and
channels with an individual noise sequence are examined in
Section VIII-A.
Since the current paper was submitted, we have investigated

possible extensions to the current results, some of which were
published in conference papers [6], [7]. A more general frame-
work which characterizes the set of achievable rate functions,
with improved bounds on achievability, and includes the above
examples as particular cases, is to appear in a follow up paper
which is currently in preparation. We also considered [8] an al-
ternative approach to universal communication which does not
require determining the transmit distribution a-priori.

III. DEFINITIONS AND NOTATION

A. Notation

In general we use uppercase letters to denote random vari-
ables, respective lowercase letters to denote their sample values
and boldface letters to denote vectors, which are by default
of length . However we deviate from this practice when the
change of case leads to confusion, and vectors are always de-
noted by lowercase letters even when they are random vari-
ables. denotes the set of real numbers, and denotes
a Gaussian distribution with mean and variance .
We denote the norm by . We denote by

the product of conditional probability functions e.g.,
. denotes a uniform dis-

tribution over the set .
A hat denotes an estimated value. We denote

the empirical distribution as (e.g.,

). The source vectors and/or the
variables are sometimes omitted when they are clear from
the context. We denote by the empirical
entropy, the empirical mutual information and the empirical
correlation factor, which are the respective values calculated
for the empirical distribution. All expressions such as

are interpreted
as their respective probabilistic counterparts

where
are random variables distributed according to the empirical
distribution of the vectors , or equivalently are de-
fined as a random selection of an element of the vectors i.e.,

. It is clear from this
equivalence that relations on entropy and mutual information
(e.g., positivity, chain rules) directly translate to relations on
their empirical counterparts.
We apply superscript and subscript indices to vectors to define

subsequences in the standard way, i.e.,

We denote by themutual information when
. The Bernoulli distribution is denoted

, and
denotes the binary entropy function. The indicator function

where is a set or a probabilistic event is defined as
over the set (or when the event occurs) and otherwise.
The functions and refer to base 2 unless

specified otherwise, and information theoretic quantities
are measured in bits.

We use Bachmann & Landau notations for orders of magni-
tude. Specifically, , means

or means
and means .

Throughout this paper we use the term “continuous” to refer
to the continuous real valued channel , although this def-
inition does not cover all continuous input—continuous output
channels. By the term “discrete” in this paper we always refer
to finite alphabets (as opposed to countable ones).

B. Definitions

Definition 1 (Channel): A channel is defined by a pair of
input and output alphabets , and is denoted .

Definition 2 (Fixed Rate Encoder, Decoder, Error Prob-
ability): A randomized block encoder and decoder pair for
the channel with block length and rate without
feedback is defined by a random variable distributed over
the set , a mapping and
a mapping . The error
probability for message is defined as

(3)

where for such that the conditioning in (3) cannot hold, we
define .
This system is illustrated in Fig. 1. We treat as a random

variable and as a deterministic sequence. This does not pre-
clude applying the results to a channel whose output is a
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Fig. 1. Non rate adaptive encoder-decoder pair without feedback.

Fig. 2. Rate adaptive encoder-decoder pair with feedback.

random variable and depends on , since all results are condi-
tioned on both and . Note that the encoder rate must pertain
to a discrete number of messages , but the em-
pirical rates we refer to in the sequel may be any positive real
numbers.

Definition 3 (Achievability): A rate function
is achievable with a prior defined over and

error probability if for any , there exist a pair of ran-
domized encoder and decoder, with a rate of at least such
that for any where and any message

.

Definition 4 (Adaptive Rate Encoder, Decoder, Error Proba-
bility): A randomized block encoder and decoder pair for the
channel with block length , adaptive rate and feed-
back is defined as follows:
• The message is expressed by the infinite bit sequence

.
• The common randomness is defined as a random variable

distributed over the set .
• The feedback alphabet is denoted .
• The encoder is defined by a series of mappings

where .
• The decoder is defined by the feedback function

, the decoding function
and the rate function (where

the rate is measured in bits), applied as follows:

(4)

(5)

(6)

The error probability for message is defined as

(7)

In other words, a recovery of the first bits by the de-
coder is considered a successful reception. For such that the
conditioning in (7) cannot hold, we define . The
conditioning on is mainly for clarification, since it is treated
as a fixed vector. This system is illustrated in Fig. 2.

Note that if we are not interested in limiting the feedback rate,
and perfect feedback can be assumed, the definition of feed-
back alphabet and feedback function is redundant (in this case

and ). The model in which the decoder deter-
mines the transmission rate is lenient in the sense that it gives
the flexibility to exchange rate for error probability: the decoder
may estimate the error probability and decrease it by reducing
the decoding rate. In the scheme we discuss here the rate is de-
termined during reception, but it’s worth noting in this context
the posterior matching scheme [9] for the known memoryless
channel. In this scheme the message is represented as a real
number and the rate for a given error probability
can be determined after reception by calculating and
finding the smallest interval with probability at least .

Definition 5 (Adaptive Achievability): A rate function
is adaptively achievable with a prior

defined over and error probability , up to a subset ,
if there exist adaptive rate encoder and decoder with feedback
such that , and :

(8)

In other words, with probability at least , a message with a
rate of at least is decoded correctly.
Note that in the definition above we only require that for

with a given probability, how-
ever in the two cases presented here, we show that
deterministically.

Definition 6 (Asymptotic Achievability): A sequence of rate
functions defined for is asymptotically achievable
(adaptively/non adaptively) with a prior defined for vec-
tors of increasing size, if for all there exists a
sequence of functions with ,

such that
1) For all large enough, is achievable
(adaptively/non adaptively, resp.) with the given and

.
2) In the adaptive case, the sequence of the sets for which

is adaptively achievable satisfies
.
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IV. FIXED RATE COMMUNICATION WITHOUT FEEDBACK

In this section we show that the empirical mutual informa-
tion (in the discrete case) and its Gaussian counterpart (in the
continuous case) are asymptotically achievable. For the contin-
uous case we justify the choice of the Gaussian distribution as
the one yielding the maximum rate function that can be defined
by second order moments.

A. The Discrete Channel Without Feedback

The following theorem formalizes the achievability of rate
without feedback:

Theorem 1 (Non-Adaptive, Discrete Channel): Given dis-
crete input and output alphabets , for every ,
prior over and rate there exists large enough
and a random encoder-decoder pair of rate over block size ,
such that the distribution of the input sequence is and
the probability of error for any message given an input sequence

and output sequence is not greater than if
.

Corollary 1: is asymptotically achievable.
Theorem 1 follows almost immediately from the following

lemma, which is proven in the Appendix using a simple calcu-
lation based on the method of types [10]:

Lemma 1: For any sequence the probability of a
sequence drawn independently according to to have

is upper bounded by:

(9)

where .
Following notations used by Csiszár [10], denotes the

probability of the event or equivalently the set of sequences
under the i.i.d. distribution . Remarkably, the bound (9)

does not depend on .
To prove Theorem 1, a codebook is randomly

generated by i.i.d. selection of its letters. The
common randomness is defined as the codebook itself
and is distributed . The encoder sends the -th codeword,
and the decoder uses maximum mutual information decoding
(MMI) i.e., chooses:

(10)

where ties are broken arbitrarily. If the message was trans-
mitted then . Since the codewords are independent,
conditioning on does not change the distribution of the other
codewords. By Lemma 1 and the union bound, the probability
of error is bounded by:

(11)

where the probabilities above are with respect to the common
randomness (note that all codewords are random i.i.d., ex-
cept which is in the conditioning). For any there is
large enough such that . For this , when-
ever we have

(12)

which proves the theorem.

Note that the MMI decoder used here is a popular universal
decoder [5], [10], [11], and was shown to achieve the same error
exponent as the maximum likelihood decoder for the discrete
memoryless channel (DMC) with fixed composition codes. The
error exponent obtained here (11) is better than the classical
error exponent (slope of ), and the reason is that the behavior
of the channel is a-posteriori known, and therefore no errors
occur as a result of non-typical channel behavior. Comparing
for example with the derivation of the random coding error ex-
ponent for the probabilistic DMC [10] based on the method
of types, in the later the error probability is summed across
all potential “behaviors” (conditional types) of the channel ac-
counting for their respective probabilities, resulting in one be-
havior, usually different from the typical behavior, dominating
the bound. Here the behavior of the channel (the conditional
distribution) is fixed, and therefore the error exponent is better.
This relates to Hughes and Thomas’ observation [12, Theorem
4] that the error exponent in an AVC with a constraint (on the
empirical distribution of the state sequence) is in general better
than the error exponent of a compound channel where the con-
straint applies to the (non empirical) distribution of the state se-
quence, which they explain by the fact that in AVC the constraint
is strict. The error rate obtained here is not necessarily the best
rate that can be achieved. It is known that random decision time
and feedback may improve the error exponent for probabilistic
and compound models [11], [13].
Note that the empirical mutual information is always well

defined, even when some of the input and output symbols do
not appear in the sequence, since at least one input symbol and
one output symbol always appear. For the particular case of em-
pirical mutual information measured over a single symbol, the
empirical distributions become unit vectors (representing con-
stants) and their mutual information is 0.
In this discussion we have not dealt with the issue of choosing

the prior . Since the channel behavior is unknown it makes
sense to choose the maximum entropy, i.e., the uniform prior,
which was shown to obtain a bounded loss from capacity [14].

B. The Continuous Channel Without Feedback

When turning to define empirical rates for the real valued al-
phabet case, the first obstacle we tackle is the definition of the
empirical distribution. A potential approach is to use discrete
approximations and turn the problem into the discrete problem
discussed above (while limiting the growth rate of the discrete
alphabet to still attain ), however we do not pursue this
approach since it is somewhat arbitrary. We focus on empir-
ical rates defined by the correlation factor. Although the later
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approach is pessimistic and falls short of the mutual informa-
tion for most channels, it is much simpler and elegant than dis-
crete approximations. We believe this approach can be further
extended to obtain results closer to the (probabilistic) mutual
information.

1) Choosing the Input Distribution and Rate Function: First
we justify our choice of the Gaussian input distribution and the
aforementioned rate function. We take the point of view of a
memoryless compound (probabilistic, unknown) channel. If a
rate function cannot be attained for compound channel model,
it cannot be attained also in the more stringent individual model.
It is well known that for a memoryless additive noise channel
with constraints on the transmit power and noise variance, the
Gaussian noise is theworst noisewhen the prior is Gaussian, and
the Gaussian prior is the best prior when the noise is Gaussian.
Thus by choosing a Gaussian prior we choose the best prior for
the worst noise, and can we guarantee the mutual information
will equal, at least, the Gaussian channel capacity [15, Problem
9.21]. For the additive noise channel with an arbitrary i.i.d. noise
distribution, Zamir and Erez [16] showed that the loss from ca-
pacity when using Gaussian distribution is limited to a bit.
However the above is true only for additive noise channels. For
the more general case where no additivity is assumed we show
below (Lemma 3) that the rate function is
the best rate function that can be defined by second order mo-
ments, and attained universally. Of course, this proof merely
supplies the motivation to use a Gaussian distribution and does
not rid us from the need to prove this rate is achievable for
specific, individual sequences. We use the following technical
lemma:

Lemma 2: Let X,Y be two continuous random variables with
correlation factor , where is Gaussian

. Then

Corollary 2: Equality holds iff , are jointly Gaussian

Remark 3: The lemma does not hold for general (not
Gaussian)
The proof is given in the Appendix. Note that

is the mutual information between two jointly Gaussian r.v-s
[15, Example 8.5.1]. Also note the relation to Hassibi and
Hochwald’s result [17, Theorem 1] dealing with an additive
channel with uncorrelated, but not necessarily indepen-
dent noise. The following lemma justifies our selection of

:

Lemma 3: Let be an input prior, be an
unknown channel, be the correlation matrix

between induced by the joint

probability and be the correlation factor in-
duced by . Then
is the largest function of that satisfies the following condi-
tion: there exists a such that for every channel
inducing correlation the mutual information is at least

(in other words all channels with such a correlation matrix can
carry the rate ). Alternatively this can be stated as:

(13)

Proof of Lemma 3: satisfies the
condition by selecting an input prior and by
Lemma 2 the mutual information is at least for all chan-
nels. On the other hand, any function satisfying the con-
ditions of the lemma satisfies , since
by writing the condition of the lemma for the additive white
Gaussian noise (AWGN) channel (a specific choice of )
and any , we have

(14)

where the inequalities follow from the conditions of the lemma
and from the fact the Gaussian prior achieves the AWGN
capacity.

Note that since the mutual information between two Gaussian
r.v-s is , one can think of this value as a measure
of mutual information under Gaussian assumptions. In the se-
quel we sometimes use the term “empirical mutual information”
in a broad sense that includes also the metric .
2) A Communication Scheme for the Individual Channel:

The following theorem is the analogue of Theorem 1 where the
expression (interpreted as the Gaussian effec-
tive mutual information) plays the role of mutual information.

Theorem 2 (Non-Adaptive, Continuous Channel): Given the
channel for every , power and rate

there exists large enough and a random encoder-de-
coder pair of rate over block size , such that the distribution
of the input sequence is and the probability of
error for any message given an input sequence and output se-
quence with empirical correlation is not greater than if

Corollary 4: is asymptotically achievable.
As before, the theorem will follow easily from the following

lemma, proven in the Appendix.

Lemma 4: Let be two sequences, and let

(15)

be the empirical correlation factor. For any , the probability of
drawn according to to have is bounded by:

(16)

where

(17)
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To prove Theorem 2, the codebook is randomly
generated by Gaussian i.i.d. selection of its
letters, and the common randomness is defined as the
codebook itself and is distributed . The encoder sends
the -th codeword, and the decoder uses maximum empirical
correlation decoder i.e., chooses:

(18)

where ties are broken arbitrarily. By Lemma 4 and the union
bound, the probability of error is bounded by:

(19)

where the probabilities are with respect to the common random-
ness . Choosing large enough so that
(where is from Theorem 2) we have that when

:

(20)

which proves the theorem.

A note is due regarding the definition of in singular cases
where or are 0. The limit of as is undefined (the
directional derivative may take any value in [0,1]), however for
consistency we define when . Since is generated
from a Gaussian distribution we do not worry about the event

since the probability of this event is 0. We refer the reader
to Section VIII-B, for a discussion of the connection between
the decoding rules used in the discrete and continuous cases.
Combining Lemma 4 with the law of large numbers pro-

vides a simple proof for the achievability of the AWGN capacity
, which uses more elementary tools than the

popular proofs based on AEP or error exponents.

V. RATE ADAPTIVE COMMUNICATION WITH FEEDBACK

In this section we present the rate-adaptive counterparts of
Theorems 1, 2, and the scheme achieving them. The proof is
delayed to the next section. The scheme we use in order to adap-
tively attain these rates is by iterating a rateless coding scheme.
In other words, in each iteration we send a fixed number of bits
, by transmitting symbols from an length codebook, until

the receiver has enough information to decode. Then, the re-
ceiver sends an indication that the block is over and a new block
starts. For background on rateless codes and comparisons with
other schemes refer to Section VIII-C.

A. Statement of the Main Result

In this section and the next, we prove the following theorems,
relating to the definitions given in Section III-B:

Theorem 3 (Rate Adaptive, Discrete Channels): Given dis-
crete input and output alphabets , for every

and prior over there is large enough and
random encoder and decoder with feedback and variable rate
over block size with a subset , such that:
• The distribution of the input sequence is indepen-
dently of the feedback and the message

• The probability of error is smaller than for any
• For any input sequence and output sequence
the rate is

• The probability of is bounded by

Corollary 5: is asymptotically adaptively
achievable.

Theorem 4 (Rate Adaptive, Continuous Channels): Given the
channel for every , and
power there is large enough and random encoder and
decoder with feedback and variable rate over block size with
a subset , such that
• The distribution of the input sequence is
independently of the feedback and the message

• The probability of error is smaller than for any
• For any input sequence and output sequence
the rate is

• The probability of is bounded by

Corollary 6: is asymptotically
adaptively achievable.
We prove the two theorems together. First we define the

scheme, and make some comments on the achievability results.
In the next section we analyze the error performance and the
rate and show the proposed scheme achieves the promise of the
theorems.

B. A Proposed Rate Adaptive Scheme

The following communication scheme sends blocks of
bits each, over channel uses, where is fixed, and , which
is the number of blocks, varies according to empirical channel
behavior. The building block is a rateless transmission of bits
which is iterated until the -th symbol is reached. Throughout
this section and the following one we use to denote the length
of a complete transmission, and to denote the length of a
single block.
The transmit distribution is an arbitrary distribution for the

discrete case and for the continuous case. The
empirical rate is:

(21)

The empirical rate is also used as a decoding metric. The code-
book consists of codewords of length
, where all symbols are drawn i.i.d. and known
to the sender and receiver. denotes the absolute time index

. Block starts from index , where .
denotes the time index inside the current block.

For brevity of notation we denote the rate function measured
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over symbols ending at the current time as
.

In each rateless block , a new index
is sent to the receiver using the fol-

lowing procedure:
1) The encoder sends index by sending the symbols of code-
word :

(22)

Note that different blocks use different symbols from the
codebook.

2) The encoder keeps sending symbols and incrementing
until the decoder announces the end of the block through
the feedback link.

3) The decoder announces the end of the block after symbol
in the block if for any codeword :

(23)

where is a fixed threshold per symbol defined in (24)
below.

4) When the end of block is announced one of the fulfilling
(23) is determined as the index of the decoded codeword
(breaking ties arbitrarily).

5) Otherwise the transmission continues, until the -th
symbol is reached. If symbol is reached without ful-
filling (23), then the last block is terminated without
decoding.

After a block ends, is incremented and if a new block
starts at symbol . After symbol is reached the
transmission stops and the number of blocks sent is .
The threshold is defined as:

(24)

where

(25)

(26)

The threshold is tailored to achieve the designated error
probability and is composed of 3 parts. The first part requires
that the empirical rate would approximately equal the
transmission rate of the block , which guarantees there is
approximately enough mutual information to send bits. The
second part is an offset responsible for guaranteeing an error
probability bounded by over all the blocks in the transmis-
sion. The third part compensates the overhead terms in
Lemmas 1,4.
The scheme achieves the claims of Theorems 3,4 with a

proper choice of the parameters (discussed in Section VI-C).
Note that the scheme uses feedback rate of bit/use however
it is easy to modify it to use any positive feedback rate (see

Fig. 3. Illustration of lower bound of Theorem 4 and the lower
bound shown in the proof in Section VI-C2, as a function of . See the
parameters in Table III in the Appendix.

Section VIII-G), therefore we can claim the theorems hold with
“zero rate” feedback.

C. Comments on the Results

In Theorem 4 we do not have uniform convergence of the
rate function in , as opposed to other results in this paper.
Unfortunately our scheme is limited by having a maximum rate
for each , and although the maximum rate tends to infinity as

, we cannot guarantee uniform convergence for each
in the continuous case, where the target rate may be unbounded.
The rates in the theorems are the minimal rates, and in certain
conditions (e.g., a channel varying in time) higher rates may be
achieved by the scheme.
Fig. 3 illustrates the lower bound for presented by

Theorem 4 for a specific choice of parameters. The solid
line presents . Below it, is a
lower bound for the rate achieved by the proposed scheme
(Section VI-C2, (65)). Observe that follows the trend
of , but is slightly lower, and reaches a bounded rate for

, where is unbounded. is a lower
bound on which obeys the structure defined in Theorem
4. The parameters generating these curves appear in Table III
in the Appendix.
Regarding the set as we shall see in the sequel there are

some sequences for which poor rate is obtained, and since we
committed to an input distribution we cannot avoid them (one
example is the sequence of zeros followed by ones, in
which as we shall see, at most one block will be sent). However
there is an important distinction between the claim made in the
theorems that “A failure may happen only when belongs to
a subset with probability at most ”, and a simpler, but a
weaker claim that “For each the probability of failure is at
most ”. This is demonstrated in Fig. 4, where each gray box
indicates that is a bad sequence for a specific . In Fig. 4(a)
the probability of a bad sequence for each is small, however
for each there is a such that this is bad for that , and
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Fig. 4. Illustration of bad sequences and Lemma 5. In (a) the probability of
bad sequences, denoted by grey boxes, is low for each , whereas in (b) in
addition, the set of for which bad sequences may occur has low probability
irrespective of .

therefore by choosing as a function of one may increase
the failure probability to 1. In Fig. 4(b) the set of bad sequences
in is limited independently of , therefore this is avoided. A
consequence of the definition that a failure may only happen if

is that the failure probability is bounded by for any
conditional probability on the sequences. This issue is
further discussed in Section VI-A.
Note that the probability could be absorbed into by a

simple trick, but this seems to make the theorem less insightful.
After reception the receiver knows the input sequence with
probability of at least and may calculate the empirical
mutual information . If the rate achieved by the scheme
falls short of it may declare a rate of
(which will most likely result in a decoding error). This way the
receiver will never declare a rate which is lower than
unless there is an error, and we could avoid the restriction

required for achieving , but on the other hand, the
error probability becomes conditioned on the set .

VI. PROOF OF THE MAIN RESULT

In this section we analyze the adaptive rate scheme pre-
sented and show it achieves Theorems 3,4. Before analyzing
the scheme we develop some general results pertaining to the
convexity of the mutual information and correlation factors
over sub-vectors. The proof of the error probability is common
to the two cases, while the analysis of the achieved rate is
performed separately for each case.

A. Preliminaries

1) Likely Convexity of the Mutual Information: A property
which would be useful for the analysis is -convexity of the em-
pirical mutual information with respect to joint empirical distri-
butions measured over different sub-vectors. The
main application of such a property is to show that obtaining the
empirical mutual information over each sub-block in the rateless
scheme, yields a rate equal at least to the empirical mutual infor-
mation measured over the entire transmission. Had the rate been
averaged over multiple sequences rather than obtained for a
specific sequence, the regular convexity of the mutual informa-
tion with respect to the channel distribution would have been
sufficient (as in the case of an individual state sequence [4]).
However for a specific sequence, this property does not hold.
Instead, we show the desired convexity approximately holds,
apart from a vanishing set of input sequences. The property is
formalized in the following lemma:

Lemma 5 (Likely Convexity of Mutual Information):
Let define a disjoint partitioning of the index set

into subsets, i.e., and
for . are -length sequences, and

denote the sub-sequences of (resp.) over the index set
. Let the elements of be chosen i.i.d. with distribution .
Then for any there is a subset such that:

(27)

and

(28)

with .
The lemma does not claim that convexity holds with high

probability, but rather that any positive deviation from con-
vexity may happen only on a subset of with vanishing
probability. Surprisingly, the bound does not depend on
and the size of the subsets, and only weakly depends on the
number of subsets. In the sequel we use the lemma to:
1) Show that the average rate (empirical mutual information)
over multiple blocks equals at least the mutual information
measured over the blocks together.

2) Bound the loss due to insufficient utilization of the last
symbol in each rateless encoding block.

3) Bound the loss due to not completing the last rateless en-
coding block.

Note that the set in Lemma 5 corresponds to the set in The-
orem 3. At this point, we can return to the discussion regarding
the set in Section V-C and make it more concrete. We can see
that the scheme would fail for the sequence of zeros fol-
lowed by ones. This sequence guarantees that at most one
block will be received (since at most one block includes both
-s and -s at the input which is necessary for having ).
On the other hand the zero order empirical input distribution of
this sequence is good , and by setting we can
have , i.e., high empirical mutual information to-
gether with a low communication rate. This sequence belongs
to the set where the “likely convexity” does not hold. As was
stressed in Section V-A and illustrated in Fig. 4, it is important
that Lemma 5 is stated in terms of a failure set in , rather than
in terms of the probability of failure for each separately.

Proof of Lemma 5: Define the vector denoting the subset
number of each element . Then the em-
pirical distribution of is and

(refer to the definitions in Section III-A). There-
fore we can write the weighted sum of empirical mutual infor-
mation over the partitions, as a conditional empirical mutual
information:

(29)
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Using the chain rule for mutual information [15, Sec. 2.5]:

(30)

Define the set , then

(31)

and since is chosen i.i.d. and is a fixed vector, we have from
Lemma 1:

(32)

with .

Note that if the empirical distribution of is the same over
all partitions then therefore and
the empirical mutual information will be truly convex.
2) Likely Convexity of the Correlation Factor: For the

continuous case we use the following property which some-
what parallels Lemma 5. The reasons for not following the
same path as the discrete case will be explained in the sequel
(Subsection VI-C). The proof appears in Appendix E. Note that
again the bound does not depend on the size of the subsets.

Lemma 6 (Likely Convexity of ): Define as in
Lemma 5. Let be -length sequences and define the corre-
lation factors of the sub-sequences, and the overall correlation
factor as

and (33)

respectively. Let be drawn i.i.d from a Gaussian distribution
. Then for any there is a subset

such that:

(34)

and

(35)

In other words, there is a subset with high probability on
which the mean of the correlation factors does not fall consid-
erably below the overall correlation factor.
3) Likely Convexity With Dependencies: The properties of

likely convexity defined in the previous sections pertain to a
case where the partition of the block is fixed and is drawn
i.i.d. However in the transmission schemewe described, the par-
tition varies in a way that depends on the value of (through
the decoding decisions and the empirical mutual information),
which may, in general, change the probability of the convexity
property with a given to occur. Although it stands to reason
that the variability of the block sizes in the decoding process
reduces the probability to deviate from convexity since it tends

to equalize the amount of mutual information in each rateless
block, for the analysis we assume an arbitrary dependence, and
assume that the size of the set increases by factor of the
number of possible partitions, as explained below.
Denote a partition by (as defined in Lemmas 5,

6) and the group of all possible partitions (for a given encoder-
decoder) by . We assume that the partition is selected
arbitrarily. For each partition from Lemmas 5, 6 there is a
subset with probability bounded by outside which ap-
proximate convexity (as defined in the lemmas) holds. Then
approximate convexity is guaranteed to hold for

, where the probability of the set is bounded by the

union bound:

(36)

Now we bound the number of partitions. In the two cases we
will deal with in Section VI-C the number of subsets can be
bounded by a value , and all subsets but one contain con-
tinuous indices. Therefore the partition is completely defined by
the start and end indices of subsets (allowed to overlap
if there are less than subsets), thus

and we have

(37)

where is defined in the previous lemmas. So for our purposes
we may say that these lemmas hold even if the partition depends
on with an appropriate change in the probability of .

B. Error Probability Analysis

In this subsection we show the probability (with respect to
the common randomness) to decode incorrectly any of the
indices is smaller than .
With defined in (21), we have from Lemma 4 that

under the conditions of the lemma
. Then combining Lemmas 1 and

4, we may say that for any the probability of generated
i.i.d. from the relevant prior to have is bounded by:

(38)

where is defined in (25) and is defined in (26).
An error might occur if at any symbol an incorrect

codeword meets the termination condition (24). The probability
that codeword meets (24) at a specific symbol which is
the -th symbol of a rateless block is bounded by:

(39)
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The probability of any erroneous codeword to meet the
threshold at any symbol is bounded by the union bound:

(40)

where probabilities above are with respect to the common
randomness . The first inequality is since the correct code-
word might be decoded even if an erroneous codeword met
the threshold. Although the index in the expression above
depends on and the specific sequences in an unspecified
way, the assertion is true since the probability of the event in
the union has an upper bound independent of .

C. Rate Analysis

We now turn to prove the achieved rate. The total amount of
information sent (with or without error) is . Therefore the
actual rate is

(41)

We now endeavor to show this rate is close to or higher than
the empirical mutual information with probability of at least
over the sequences , regardless of and of whether a decoding
error occurred.
The following definition of index sets in is used

for both the discrete and the continuous cases:
denotes the channel uses of block except the last one, col-
lects the last channel uses of all the blocks

, and denotes the indices of the un-decoded (last)
block (including its last symbol), and is an
empty set if the last block is decoded. The sets are
disjoint and their union is . We denote the length of

each block not including the last symbol by . From
this point on we split the discussion and we start with the dis-
crete case which is simpler.
Roughly speaking, since , if no error occurs, the

correct codeword crossed the threshold when
therefore the rate achieved over a rateless block is

, and due to the approximate convexity by
achieving the above rate on each block separately we meet or
exceed the rate over the entire transmission. How-
ever in a detailed analysis we have the following sources of rate
loss:
1) The offsets inserted in to meet the desired error
probability

2) The offset from convexity (Lemma 5) introduced by the
slight differences in empirical distribution of between
the blocks

3) Unused symbols:
a) The last symbol of each block, which is not fully uti-
lized, as explained below

b) The last (unfinished) block, which is not utilized

The proof is given in the next two subsections, separately for
the discrete and continuous case. Following the proof, we give
some comments regarding the proof technique.
1) Rate Analysis for the Discrete Case: We write the

threshold (24) as where
are defined below:

(42)

From Lemma 5 and (37) we have that the following equation:

(43)

is satisfied when is outside a set with probability of at most
where

. We shall find the maximum number of blocks
later on. To make sure the probability of is less than

we require therefore

(44)

and we choose

(45)

We now bound each element of (43). Consider block with
symbols. At the last symbol before decoding (symbol
) none of the codewords, including the correct one

crosses the threshold , therefore:

(46)

Specifically for the unfinished block we have at symbol :

(47)

The way to understand these bounds is as a guarantee on the
shortness of the blocks given sufficient mutual information. On
the other hand, at the end of each block including the last symbol
(i.e., channel uses ), since one of the se-
quences was decoded we have:

(48)
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which we can use to bound the number of blocks, since
therefore

(49)

As for the unused last symbols we bound:

(50)

Combining (49) and (45) we have:

(51)

Combining (46), (47), (50) with (43) and substituting
yields:

(52)

From (52) and consequently can be lower bounded:

(53)

Now if we increase with such that and
, for example by choosing , then
as , since (see (42)) we have
and from (51) we have thus for any we have

large enough so that:

(54)

outside the set , where the last inequality is due to the fact is
bounded by . To prove Theorem 3, given , we just need to
plug in the above equation . Hence we proved
our claim that the rate exceeds a rate function which converges
uniformly to the empirical mutual information and the proof of
Theorem 3 is complete.

2) Rate Analysis for the Continuous Case: We denote
and the correlation factor measured

on a rateless block and on the entire transmission block, respec-
tively. We define a threshold on the block size (which we
will choose later on) and denote by
and the indices of the small and the
large blocks respectively (the last unfinished block included).
The total number of symbols in the large blocks is denoted

. The number of large blocks is bounded by
.

The decoding threshold is written as

(55)

where we denoted . We consider the partitioning
of the index set into at most sets: the first

(or less) sets are the large blocks except their last symbol
(each with at least symbols by definition), and

the last set denoted includes the rest of the symbols (last sym-
bols of these blocks and all symbols of small blocks), and has

. Since this partitioning has a bounded number
of sets, by applying Lemma 6 and (37) with we have that
the likely convexity condition (57) below is satisfied when is
outside a set with probability at most:

(56)

for any . This bound tends to 0 if
(since ) there-
fore for any such there is large enough such that this prob-
ability falls below the required . The convexity condition is:

(57)

where can be made arbitrarily close to 0. We define a factor
and apply the function to both sides

of the above equation. Since the function is monotonically in-
creasing and convex over (stemming from con-
cavity of ), we have:

(58)

We start by bounding the terms related to the large blocks.
At the last symbol before decoding in each block (or symbol
for the unfinished block) none of the codewords, including

the correct one crosses the threshold , therefore we have for
:

(59)
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and since for a large block :

(60)

For the small blocks we use
(where the

inequality is since the unterminated block has length ) to
bound .
Combining (58) with these bounds we have:

(61)

The last equation is a lower bound on a linear combination
of and . Since the total information sent depends on

we equalize the coefficients multiplying and
by determining so that:

(62)

This is always possible since the RHS is positive and the LHS
maps to . Then

(63)

Extracting a lower bound on from (63) yields a bound on the
empirical rate:

(64)

Equation (64) may be optimized with respect to to obtain a
tighter bound, but this is not necessary to prove the theorem.
Recall that . By choosing

the factor in (64) can be made arbitrarily
close to 1 and can be made arbitrarily close to 0. As we
saw above choosing enables us to have

with arbitrarily close to 0, and such a choice will
result in . Finally if then the RHS of
(62) tends to and therefore we can choose arbitrarily close

to 1. Summarizing the above, by selecting
we can write the rate as

(65)

with and . tends to the target

rate for each point (but not

uniformly), and it remains to show that for any there is
large enough such that .
The functions and are monotonically in-

creasing (for fixed and ) and it is easy to verify
by differentiation that the difference is
also monotonically increasing. Given , choose such
that . Since , for

large enough we have , and there-
fore . For this , for any

from the monotonicity of the difference we have that
, and therefore , and for

any we have from the monotonicity of that
, therefore , which

completes the proof of Theorem 4.

D. Comments Regarding the Proof Technique

In this subsection we highlight some points relating to the
proof technique, in order to help understand the motivation for
some of the steps.
One difficulty stems from the losses due to not fully utilizing

the last symbol of each block, and the last block. Regarding the
last symbol of each block, note that after receiving the previous
symbol the empirical mutual information is below the threshold,
and at the last symbol it meets or exceeds the threshold. How-
ever the proposed scheme does not gain additional rate from the
difference between the mutual information and the threshold,
and thus it loses with respect to its target (the mutual informa-
tion over the block) when this difference is large. Here a “good”
channel becomes disadvantageous. Since we operate under an
individual channel regime, the increase of the mutual informa-
tion at the last symbol is not bounded by the mutual information
contributed by a single symbol. This is especially evident in the
continuous case where the empirical mutual information is un-
bounded. A high value of together with high value of at the
last symbol causes an unbounded increase in : if we choose

then regardless of the history
. Therefore over a single block we might have an

arbitrarily low rate ( is small over the first symbols)
and arbitrarily large . In the discrete case this phenomenon
exists but is less accented (consider for example the sequences

). Similarly regarding the last
block, the fact that the length of the block may be bounded does
not immediately indicate the increase in the empirical mutual in-
formation can be bounded as well. We use the likely convexity
(Lemma 5) to show the last two losses are bounded for most
sequences.
The continuous case is more difficult for several reasons. One

is that the error probability exponent has a missing degree of
freedom . This results in a rate loss (through
in the definition of ), which is larger for small blocks, and
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can be bounded only when assuming the number of blocks does
not grow linearly with . Since the effective mutual information

is unbounded we cannot simply bound the loss of
mutual information over the unused symbols. Specifically for a
single symbol, and . Therefore we use the con-
vexity of the correlation factor and the fact it is bounded by 1. As
a result, the loss introduced in order to attain convexity (over the
rateless blocks) is in the correlation factor rather than the empir-
ical mutual information. A loss in the correlation factor induces
an unbounded loss in the rate function for , leading to a
maximum rate. In order to cope with these difficulties we use
the threshold on the number of symbols in a block, and treat
large and small blocks differently: the large blocks are analyzed
through their correlation factor and for the small blocks the cor-
relation factor is upper bounded by 1 and only the number of
blocks is accounted for.

VII. EXAMPLES

In this section we give some examples to illustrate the model
developed in this paper. In this section we use a slightly less
formal notation.

A. Constant Outputs and Other Illustrative Cases

The statement that a rate which is determined by the input and
output sequences can be attained without assuming any depen-
dence between themmay seem paradoxical at first. Some insight
can be gained by looking at the specific case where the output
sequence is fixed and does not depend on the input. In this case,
obviously, no information can be transferred. Since the encoder
uses random sequences, the result of fixing the output is that the
probability to have an empirical mutual information larger than

tends to , therefore most of the time the rate will be .
Infrequently, however, the input sequence accidentally has em-
pirical mutual information larger than with the output
sequence. In this case the decoder will set a positive rate, but
will very likely fail to decode. These cases occur with vanishing
probability and constitute part of the error probability. So in this
case we will transmit rate with probability of at least
and with probability at most . Conversely, if the channel
appears to be good according to the input and output sequences
(suppose for example ), the decoder does not know
if it is facing a good channel or just a coincidence, however it
takes a small risk by assuming it is indeed a good channel and
attempting to decode, since the chances of high mutual informa-
tion appearing accidentally are small (and uniformly bounded
for all output sequences).
Another point that appears paradoxical at first sight is that the

decoder is able to determine a rate without knowing
for any . First observe that although it is an output of the

decoder, the rate is not controlled by the encoder and there-
fore cannot convey information. Since the decoder knows the
codebook, and given the codebook the sequence is limited to
a number of possibilities (determined by the possible messages
and block locations), it is easy to find an
by maximizing over all possible sequences . Vaguely
speaking, the decoding process is indeed a maximization of

over multiple sequences and by Lemmas 1, 4 such a
decoding process guarantees a small probability of error.

B. Using Individual Channel Model to Analyze Adversarial
Individual Sequence

As we noted in the overview, the results obtained for the in-
dividual channel model constitute a convenient starting point
for analyzing channel models which have a full or partial prob-
abilistic behavior. It is clear that results regarding achievable
rates in fully probabilistic, compound, arbitrarily varying and
individual noise sequence models can be obtained by applying
the weak law of large numbers to the theorems discussed here
(in general, common randomness would have to be assumed).
E.g. for a compound channel model with an

unknown parameter since

in probability for every and since
is continuous . Hence from Theorem

1 rate can be obtained without feedback, and
from Theorem 3 rate can be obtained with feedback.
These results are not new for the non-adaptive case [18], [19],
and for the rate adaptive case can be obtained as a special case
of results on channel with an individual state sequence [2], [4]
since the individual noise sequence model can be degenerated
into a compound model. They are given only to show the ease
of using the individual model once established.
To show the strength of the model we analyze a problem con-

sidered also by Shayevitz and Feder [2] of an individual se-
quence which is determined by an adversary and allowed to
depend in a fixed or randomized way on the past channel in-
puts and outputs. For simplicity we start with the binary channel

where is allowed to depend on and
(possibly in a random fashion), and the target is to show

the empirical capacity is still achievable in this scenario. Note
that here, unlike in most of this paper, the noise is a random
variable but not assumed to be i.i.d. We denote the relative
number of errors by . We would like to show
the communication scheme achieves a rate close to
with high probability, regardless of the adversary’s policy. Note
that both the achieved rate and the target are random
variables and the claim is that they are close with high proba-
bility (i.e., that the difference converges in probability to when

)
Applying the scheme achieving Theorem 3 with

we can asymptotically approach (or exceed) for almost every
the rate:

(66)

Note that unlike in the probabilistic BSC where we have
, here the empirical distribution of

is not necessarily independent of , therefore the entropies
are only related by the inequality (condi-
tioning reduces entropy). In order to show a rate of
is achieved, we only need to show .
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Since is independent of and therefore also of
we have:

(67)

Therefore is distributed i.i.d. and from the law of
large numbers and the continuity of we have the desired
result.
We can extend the example above to general discrete chan-

nels and perform a consolidation of the adversarial sequence
model considered by Shayevitz and Feder [2] (for modulo ad-
ditive channels) with the general discrete channel with fixed se-
quence considered by Eswaran et al. [4].We address the channel

with state sequence potentially determined by an
adversary knowing all past inputs and outputs. We would like
to show that the rate (the mutual in-
formation of the state-averaged channel) can be asymptotically
attained in the sense defined above.
This result is a superset of the previous results [4], [2]. It

overlaps with the first [4] in the case is a fixed sequence and
with the other [2] for the case of modulo-additive channel (or
when the target rate is based on the modulo additive model).
Since Theorem 3 shows the rate

can be approached or exceeded asymptotically, it remains
to show that the empirical distribution is asymptot-

ically close to the state-averaged distribution
, and the re-

sult will follow from continuity of the mutual information. Note
that the later value is a random variable (function) depending
on the behavior of the adversary. Here we do not use the law
of large numbers because of the interdependencies between the
signals and .
Our purpose is to prove that the difference defined

below converges in probability to 0 for every :

(68)

where . For
brevity of notation we omit the argument from
since from this point on it takes a fixed value. Then

(69)

where (a) is due to the independent drawing of (when not
conditioned on the codebook), the fact is independent of
, and the memoryless channel (defining the Markov chain

), and (b) is due to the
i.i.d drawing of from and the definition of . From (69)
we have that:

(70)

By taking an expected value from both sides of (70) and using
the law of iterated expectations we also have that has zero
mean . We now show that are uncorrelated. Con-
sider two different indices (without loss of generality)
then

(71)

where we used the law of iterated expectations and the fact
is completely determined by which are given. In ad-
dition since by definition . Therefore

(72)

and by Chebyshev inequality for any :

(73)

which proves the claim.

This result is new, to our knowledge, however the main point
here is the relative simplicity in which it is attained when relying
on the empirical channel model (note that most of the proof did
not require any information-theoretic argument).

C. Employing the Continuous Channel Scheme Over a BSC

When operated over a channel different than the Gaussian
additive noise channel, the rates achieved with the scheme we
described in the continuous case are suboptimal compared to the
channel capacity. The loss depends on the channel in question.
As an example, suppose the communication system is used over
a BSC with crossover probability , i.e., the continuous input
value is translated to a binary value by , and the
output is . The capacity of this channel
is and we are interested to calculate the rate
which would be achieved by our scheme (which does not know
the channel) for this channel behavior. For this channel with
Gaussian input we have (through a simple calculation):

(74)

hence

(75)

(76)

The comparison between and is presented in Fig. 5. It can
be shown that , thus the maximum loss is 36%.
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Fig. 5. Comparison of C,R for the BSC.

D. An Effective AWGN Channel

The rate function in the contin-
uous case, can be also written in the familiar form similar to
the AWGN capacity

(77)

where

(78)

represents the SNR measured using a reference channel:
given the input and output sequences, the output can be de-
scribed by the following virtual additive channel:

(79)

so the effective noise sequence is , where is
chosen such that , i.e., . An equivalent con-
dition is that minimizes . The resulting is the LMMSE
coefficient in estimation of from (assuming zero mean), i.e.,

(80)

Define the effective signal power and noise power as
, and , respectively. can now

be written as the SNR of this effective channel:

(81)

This yields an alternative representation of (2), i.e., the rate

is asymptotically adaptively
achievable.

E. Non Linear Channels

In analyzing probabilistic channels, the correlation model
determines the rate is always achievable using
a Gaussian code (no randomization is needed if the channel
is probabilistic, as can be shown by the standard argument

about the existence of a good code). This is actually a result of
Lemma 2.
This expression is useful for analyzing channels in which the

noise is not additive or non-linearities exist. As an example,
transmitter noise is usually modeled as an additive noise. How-
ever large part of this noise is due to distortion (e.g., in the power
amplifier), and therefore depends on the transmitted signal and
is inversely correlated to it. Consider the non linear channel

with . In this case if we define the ef-
fective SNR as then rate
is achievable. The correlation factor is:

(82)

Therefore the effective SNR can be written as:

(83)

where we defined the effective gain , the effective power
and the effective noise as:

(84)

(85)

(86)

This yields a simple characterization of the degradation caused
by the non-linearity, which is independent of the noise power.
This model enables to characterize the transmitter distortions by
the two parameters , a characterization which is more
convenient and practical to calculate than the channel capacity,
and on the other hand guarantees that transmitter noise evalu-
ated this way never degrades the channel capacity in more than
determined by (83).
Another interesting application of this bound is in treating

receiver estimation errors, since it is sometimes simpler to cal-
culate the loss in the correlation factor induced due to the im-
perfect knowledge of the channel parameters than the loss in
capacity (see Hassibi’s bounds for the loss due to channel esti-
mation from training [17]).

VIII. COMMENTS AND DISCUSSION

A. Relation to Similar Models

Below we examine the differences between the framework
proposed here and two similar models: the arbitrarily varying
channel (AVC) and the channel with an individual noise
sequence.
In the AVC model [1], [20], the channel is defined by a

probabilistic model which includes an unknown state sequence.
Constraints on the sequence (such as power, number of errors)
may be defined a-priori, and the target is to communicate
equally well over all possible occurrences of the state sequence.
In AVCs, the capacity depends on the existence of common
randomness and on whether the average or maximum error
probability (over the messages) is required to approach . Yet
when sufficient common randomness is used, the capacities for
maximum and average error probability are equal. Lapidoth
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and Narayan’s notes [1, p.2151] regarding common random-
ness and randomized encoders are also relevant to our case.
As opposed to the current model, in the AVC any constraints
on the state sequence have to be set in advance, and the rate
considers the worst case conditions. In both AVCs and the cur-
rent framework common randomness is important to achieve
high communication rates. In the current framework common
randomness plays a more vital role since we require a specific
input distribution.
A result which may be considered as a different viewpoint on

the AVCmodel was presented by Agarwal et al. [21]. Their mo-
tivations come from network coding theory. Their main result
concerns communication over a black box which is only limited
to a given level of distortion according to a predefined metric,
but has otherwise a block-wise undefined behavior. They show
that it is possible to achieve a rate equal to the rate-distortion
function of the input , if the black box guarantees av-
erage distortion with high probability. This result is similar
to our Theorem 1. The remarkable distinction from other re-
sults for AVC is that the rate is determined using a constraint
on the channel inputs and outputs, rather than the channel state
sequence. Langberg [22] proposed another characterization of
an AVC, where common randomness is not assumed, however
the “amount of information” the adversary may use about the
transmitted sequence is limited.
Channels with individual noise (or state) sequence are treated

by Shayevitz and Feder [2], [3] and Eswaran et al. [4]. The prob-
abilistic setting is the same as in the AVC, and the difference is
that instead of achieving a uniform (hence worst-case) rate, the
target is to achieve a variable rate which depends on the par-
ticular sequence of noise, using a feedback link. In this setup,
prior constraints on the state sequence can be relaxed. As op-
posed to AVC where the capacity is well defined, the target rate
for each state sequence is determined in a somewhat arbitrary
way (since many different constraints on the sequence can be
defined). As an example, in the binary channel with an indi-
vidual noise sequence [3], a rate of 0 would be obtained for the
sequence since the empirical error proba-
bility is , although obviously a scheme which favors this spe-
cific sequence and achieves a rate of 1 can be designed. On the
other hand, with the AVC approach communication over this
channel would not be possible without prior constraints on the
noise sequence. Channels with individual noise sequence can
be thought of as compound-AVCs (i.e., an AVC with unknown
parameter, in this case, the constraint). As in the AVC model,
existence of common randomness as well as the definition of
error probability affect the achievable rates.
In all models discussed above, the achieved rates are related

to some parameters of the problemwhich are outside the domain
of the communication system itself. In contrast, in the individual
channel model we use here, since no equation with state se-
quence connecting the input and output is given, the achievable
rates cannot be defined without relating to the channel input.
Therefore the definitions of achieved rates depend in a some-
what circular way on the channel input which is determined
by the scheme itself. Currently we circumvent this difficulty by
constraining the input distribution, as mentioned above.

In many aspects the model used in this paper is more stringent
than the AVC and the individual noise sequence models, since
it makes less assumptions on the channel, and the error proba-
bility is required to be met for (almost) every input and output
sequence (rather than on average). In other aspects it is lenient
since we may attribute “bad” channel behavior to the rate rather
than suffer an error, therefore the error exponents are better than
in probabilistic models, as was explained in Section IV-A.

B. The Decoding Rule

In the discrete case we used a maximum empirical mutual
information receiver, and in the continuous case, a maximum
empirical correlation receiver. In this section we draw connec-
tions between the two receivers and point out other potential
receivers.
Since the mutual information between two Gaussian r.v-s is

, one can think of this value as a measure of
mutual information under Gaussian assumptions. Thus, using
this metric as an effective mutual information, since the mutual
information is an increasing function of the MMI decoder
becomes a maximum empirical correlation decoder. On the
other hand, the receiver we used can be identified as the GLRT
(generalized maximum likelihood ratio test) for the AWGN
channel with an unknown parameter,
resulting from maximizing the likelihood of the codeword and
the channel simultaneously:

(87)

The choice of the GLRT is motivated by considering the indi-
vidual channel as an effective additive channel with unknown
gain (as presented in Section VII-D), combined with the fact
Gaussian noise is the worse. For discrete memoryless channels
it is easy to show that the GLRT (where the group of channels
consists of all DMC-s) is synonymous with the MMI decoder
[1]. Thus, we can identify the two decoders as GLRT decoders,
or equivalently as variants of MMI decoders.
Regarding the receiver required to obtain the rates of The-

orem 2, it is interesting to consider the simplermaximumprojec-
tion receiver . This receiver seems to differ from

themaximum correlation receiver only in the term in (18),
which is nearly constant for large due to the law of large num-
bers. However surprisingly, the maximum rate achievable with
the projection receiver is only as can be shown by a simple
calculation equivalent to Lemma 4 (simpler, since is
Gaussian). The reason is that when is chosen independently
of , a large value of the projection (non typical event) is usu-
ally created by a sequence with power significantly exceeding
the average (another non typical event). When one non-typical
event occurs there is no reason to believe the sequence is typ-
ical in other senses thus the approximation is in-
valid. The correlation receiver normalizes by the power of and
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compensates this effect. An alternative receiver which yields the
rates of Theorem 2 and is similar to the AEP receiver looks for
the codeword with the maximum absolute projection subject to
power limited to . This can be shown by
Sanov’s theorem [10] or by using the Chernoff bound. The max-
imum correlation receiver was chosen because of its elegance
and the simplicity of the proof of Lemma 4. Note that had we
used a uniform distribution on an dimensional sphere instead
of the i.i.d. Gaussian distribution (i.e., using a constant power),
then all these receivers would become equivalent (Lemma 4 in
essence still holds in this case. See the comments in the proof of
this lemma), however limiting the distribution to a sphere would
not be appropriate to rateless coding since the stopping time is
unknown in advance.
For the AWGN channel, combining Lemma 4 with the law of

large numbers provides an alternative way to show the achiev-
ability of the AWGN capacity , without using
the AEP receiver. The maximum correlation receiver has the
technical advantage, compared to the AEP receiver, that it does
not declare an error for codewords which have power deviating
from the nominal power. This technical advantage is important
in the context of rateless decoding since the power condition
needs to be re-validated each symbol, thus increasing its contri-
bution to the overall error probability.
Lapidoth [23] showed that the nearest neighbor receiver

achieves a rate equal to the Gaussian capacity
over the additive channel with an arbitrary noise
distribution (with fixed noise power). This result parallels the
result that the random code capacity of the AVC
with a power constraint on equals the Gaussian capacity [24]
(this stems directly from the characterization of the random
code capacity of the AVC as , [10,
(V.4)].

C. Rateless Codes and Similar Schemes

The scheme proposed here is based on rateless codes. Here we
give some background regarding the evolution of rateless codes,
and the differences between the proposed techniques. Rateless
codes have been used for two main purposes: reducing the error
probability/exponent, and dealing with channel uncertainty. The
earliest work is of Burnashev [13] who showed that for known
channels, using feedback and a random decision time (i.e., de-
cision time which depends on the channel output) yields an im-
proved error exponent, which is attained by a 3 step protocol
(best described by Tchamkerten and Telatar [11]) and shown
to be optimal. Shulman [25] proposed to use random decision
time as a means to deal with sending common information over
broadcast channels (static broadcasting), and for unknown com-
pound channels (which are treated as broadcast). In this scheme
later described as “rateless coding” (or Incremental Redundancy
Hybrid ARQ) a codebook of infinite sequences is gen-
erated, and the sequence representing the message is sent to the
receiver symbol by symbol, until the receiver decides to decode
(and turn off, in case of a broadcast channel).
Tchamkerten and Telatar [11] connect the two results by

showing that for some, but not all compound channels Burna-
shev error exponent can be attained universally using rateless
coding and the 3 step protocol. Eswaran, Sarwate, Sahai and

Gastpar [4] used iterated rateless coding to achieve the mutual
information related to the empirical noise statistics on channels
with individual noise sequences. The scheme we use here is
most similar to the one used by Eswaran et al. [4] but less com-
plicated. We do not use training symbols to learn the channel
in order to decide on the decoding time but rely on the mutual
information itself as the criterion (based on Lemmas 1,4) and
the partitioning into blocks and the decision rules are simpler.
The later result [4] is an extension of Shayevitz and Feder’s

result [3] regarding the binary channel to general discrete
channels with individual noise sequence. The original result
[3] was obtained not by rateless codes but by a successive es-
timation scheme [26] which is a generalization of the Horstein
[27] and Schalkwijk-Kailath [28] schemes. The same authors
extend their results to discrete channels [2] using successive
schemes (where the target rate is the capacity of the respective
modulo-additive channel). The two concepts in achieving the
empirical rates differ in various factors such as complexity and
the amount of feedback and randomization required. The suc-
cessive schemes require less common randomness but assume
perfect feedback, while the schemes based on rateless coding
require less (asymptotically 0 rate) feedback but potentially
more randomness.
As noted, the technique we use here is similar to that of

Eswaran et al. [4] in its high level structure, while the structure
of the rateless decoder is similar to Shulman’s [25, Chapter 3].
The application of this scheme to individual inputs and outputs
and the extension to real-valued models requires proof and
especially issues such as abnormal behavior of specific (e.g.,
last) symbols had to be treated carefully. The previous results
[4] cannot be applied directly to individual channels since the
channel model cannot be extracted based on the input and
output sequences alone, and in the later both the model and the
sequence are assumed to be fixed (over common randomness).
Table II compares some attributes of the schemes. Another
important factor is the overhead (i.e., the loss in the number of
bits communicated with a given error exponent, compared to
the target rate), which we were unable to compare. We conjec-
ture that the current scheme may have a lower overhead due to
its simplicity which results in a smaller number of parameters
and constraints on their order of magnitude (compared to the
previously suggested scheme [4] where relations between
factors such as number of pilots and the minimum size of a
chunk may require a large value of ).

D. Random Decision Time

In our discussion we have described two communication sce-
narios: fixed rate without feedback and variable rate with feed-
back, and in both we assumed a fixed block size . Another
scenario is that of random decision time or rateless coding [13],
[25] in which the block size is not fixed but determined by the
decoder. We did not include this scenario since the achievability
result is less elegant in a way: the decoder indirectly affects the
target rate (mutual information) through the block size. On the
other hand this case may be of practical interest. Clearly the
mutual information can be asymptotically attained for this com-
munication scenario as well and its analysis is merely a simpler
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TABLE I
SUMMARY OF DEFINITIONS AND REFERENCES FOR THE DISCRETE AND CONTINUOUS CASES

version of the rate analysis performed in Section VI-C, since
convexity is not required.

E. Limitations of the Zero Order Empirical Model

Although we did not assume anything about the channel, and
specifically we did not assume the channel is memoryless, the
fact we used the zero-order empirical distribution means the
rates may fall short of the mutual information rate when the
system is operated over channels with memory or, in the contin-
uous case over non AWGN channels. Below we discuss several
cases where the communication fails completely.
One example is when some delay is introduced between and
. In this case the proposed scheme may be suboptimal or fail
completely. For example, for the channel
we would obtain positive rates and the intersymbol interference
(ISI) would be treated suboptimally as noise, but for the
error free channel the achieved rate would be 0 with
high probability. Similarly we can find a memoryless channel
with infinite capacity but for which the correlation-based rate
function we used for the continuous alphabet scheme fails: if

(where is Gaussian) then . Another example
of practical importance is the fading channel (with memory)

, where is slowly fading with mean .
All these examples result from the simplicity of the models

used, and can be solved by schemes employing higher order
empirical distributions (e.g., by measuring the empirical mu-
tual information over blocks of symbols, or by using Markov
models, i.e., measuring conditional empirical probabilities), and
by using higher order statistics in the continuous case. We have
extended the results to MIMO [6], and presented a compression
based model than can capture the time dependencies [7]. Fur-
thermore, the current paper exhibits a considerable similarity
between the continuous case and the discrete case which is not
fully explored here, and we hope to present a unifying theory
which will include the two as particular cases in a follow-up
paper.

F. The Amount of Randomness Required

In this work we have assumed no restriction on the amount of
common randomness available and have not attempted to mini-
mize the amount of randomness required while maintaining the
same rates. Furthermore, we have made a theoretical assump-
tion that one may have access to random variables with any de-
sired distribution, and specifically a Gaussian distribution. The
total amount of randomness required is composed of

1) The amount of randomness in single random drawing of a
letter

2) The amount of random drawings needed per
-block

The amount of randomness required to generate (simulate)
a random variable is often measured by the number of random
uniform i.i.d. bits necessary. Clearly, even the generation of a
discrete random variable with an arbitrary distribution (in
which are not multiplies of some ) cannot be accom-
plished using a finite number of random bits. However, as shown
e.g., by Han and Hoshi [29, Theorem 3, Remark 8], it can be
accomplished using a number of bits which is finite on average
(the expected number of bits is bounded by ).
Another alternative is to use a fixed number of bits, and

approximate the distribution by its “rounded” version, i.e.,
a having , and . In
the context of individual channels there is no way to tell what
is the result of changing the input distribution, as there is also
no way to determine which is better, or , however we may
use the mutual information over an unknown channel as a
figure of merit, i.e., compare with . It is easy
to show that if then for any

. Therefore a reasonable solution to limit the

amount of randomness in the discrete case is to replace the input
distribution by a distribution that can be simulated using a finite
number of random bits.
In the continuous case, the number of random bits required

to generate a Gaussian random variable is infinite (even the
number of bits required to store a real number is infinite). There-
fore any implementable system would have to use an approxi-
mation of the Gaussian distribution, and this will result in only
approximately attaining the results shown here.
Regarding the number of random drawings, we have used

random drawings, and since , the
number of random drawings is (i.e., grows faster than
). This may be much larger than actually required. For the ar-

bitrarily varying channel, Ahlswede [30] showed that selecting
out of codebooks (i.e., random bits) is sufficient. Sim-
ilar results including lower bounds on the amount of random-
ness were obtained by Langberg [31] for a binary AVC. For
the modulo-additive channel with an individual noise sequence,
Shayevitz and Feder [2, Sec. V.5] had shown that less than
random bits are required in some cases and are enough
for others. These cases are not equivalent to the one discussed
here, however the results seem to suggest the number of random
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TABLE II
COMPARISON WITH THE RATE ADAPTIVE SCHEME IN [4]

drawings can be reduced. Note however, that by making the
basic requirement that input would behave randomly
we inherently require drawings from .

G. Comments on the Scheme

1) Varying Channels: Although our target is the empirical
mutual information over the -block, an artifact of the parti-
tioning to smaller blocks is that higher rates can be attained
when the empirical conditional channel distribution varies over
time, since by the convexity of mutual information with respect
to the channel law the convex sum of mutual information over
blocks may exceed the overall mutual information if the empir-
ical channel behavior is not constant.
2) Zero Rate Feedback: It is easy to show that the feedback

rate can be reduced to for some , without significantly
changing the results. The scheme of Section V-B is modified so
that decoding and block termination (step (3)) is only performed
once every channel uses. This will result in having potentially
unused symbols instead of one. By a simplemodification to the
arguments that show the loss from not utilizing the last symbol
vanishes asymptotically, it can be shown that this loss vanishes
also for unused symbols. As an example, for the discrete case,
this modification would be expressed in replacing the factor
in (54) by .
Hence the scheme can be modified to operate with “zero rate”

feedback and would attain the same asymptotical rates. Simi-
larly the scheme can operate with a noisy feedback channel by
introducing in the feedback link a delay suitable to convey the
decoder decisions with sufficiently low error rate over the noisy
channel.
3) Maximal and Minimal Rate: The scheme has a minimal

rate and a maximal rate for each block length. The minimal rate
is resulting from sending a single block. If channel condi-
tions are worse , no information will be sent. A
maximal rate exists since at best bits could be sent every

symbols (since for the continuous case and for the dis-
crete case thus the decoding never termi-
nates at the first symbol of the block), hence the maximum rate
is . As we increase so that the minimum rate (and
the rate offsets) tend to 0 and the maximum rate tends to . The
maximum rate is the reason that the scheme cannot approach the
target rate uniformly in in the continuous case,
since for some pairs of sequences the target rate may exceed the
maximum rate by an unbounded factor. The maximum rate
that we achieve in the proof of Theorem 4 is much smaller than
the absolute maximum . Note that successive schemes (such
as Schalkwijk’s [28]) do not suffer from the problem of max-
imum rate. For the discrete case the target rate is bounded by

therefore for sufficiently large the maximal
rate exceeds and we are able to show uni-
form convergence.

IX. FURTHER RESEARCH

A. Determining the Behavior of the Transmitted Signal (Prior)

In this work we assumed a fixed prior (input probability dis-
tribution) and haven’t dealt with the question of determining
the prior, or more generally, how the encoder should adapt its
behavior based on the feedback. Had the channel been a com-
pound one, it stands to reason that a scheme using feedback may
estimate the channel and adjust the input prior, and may asymp-
totically attain the channel capacity. However in the scope of in-
dividual channels (as well as individual sequence channels and
AVC-s) it is not clear whether the approach of adjusting to the
input distribution to the measured conditional distribution is of
merit, if the empirical channel capacity can be attained for every
sequence, and even the definition of achievability is unclear if
the input distribution is allowed to vary.
Another related aspect is what we require from a communi-

cations system when considered under the individual channel
framework. This question is relevant to all the requirements de-
fined in the theorems (for example, is the existence of the failure
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set necessary ?), however the most outstanding requirement
is related to the prior.
Currently we constrained the input sequence to be a random

i.i.d. sequence chosen from a fixed prior, which seems to be
an overly narrow definition. The rationale behind this choice is
that without any constraint on the input, the theorems we pre-
sented can be attained in a void way by transmitting only bad
(e.g., fixed) sequences that guarantee zero empirical rate. Fur-
thermore, without this constraint, attainability results for prob-
abilistic models, and in general any attainable rates which are
not conditioned on the input sequence could not be derived from
our individual sequence theorems. A weaker requirement from
the encoder is to be able to emit any possible sequence. How-
ever this requirement is not sufficient, since from the existence
of such encoders we could not infer the existence of encoders
achieving any positive rate over a specific channel. Consider for
example the encoder satisfying the requirement by transmitting
bad sequences with probability and good sequences with
probability . Theorems 1,2,3 and 4 are existence theo-
rems, i.e., they guarantee the existence of at least one system
satisfying the conditions. Had we removed the requirement for
fixed input prior these theorems would be attained by encoders
that are unsatisfactory in other aspects. Once the theorem is
satisfied by one encoder it cannot guarantee the existence of
other (satisfactory) encoders, thus making it not useful. There-
fore the requirement for fixed prior is necessary in the current
framework. Although in the scope of the theorems presented
here, this requirement only strengthens the theorems (since it
reveals additional properties of the encoder attaining the other
conditions of the theorem), we are still bothered by the question
what should be the minimal requirements from a communica-
tion system, and these hopefully will not include a constraint on
the input distribution.
This issue relates to a fundamental difficulty which aries

in communication over individual channels: unlike universal
source coding in which the sequence is given a-priori, here the
sequences are given a-posteriori, and the actions of the encoder
affect the outcome in an unspecified way. Currently we broke
the tie by placing a constraint on the encoder, but we seek a
more general definition of the problem.

B. Overhead and Error Exponent

An important aspect in universal communication is the over-
head (or redundancy) associated with universality. Specifically,
when considering extending the empirical distribution to in-
clude time dependencies, we expect that such extensions will in-
crease the overhead. This overhead is related to the redundancy
or regret associated with universal distributions [32]. Although
we haven’t performed a detailed analysis of the overheads and
considered only the asymptotically achievable rates, it is ob-
vious from comparing Lemmas 1 and 4 that the tighter rates we
obtained for the discrete channel come at the cost of additional
overhead compared to in the continuous case)
which is associated with the richness of the channel family (de-
scribing a conditional probability as opposed to a single corre-
lation factor). The issue of overheads requires additional anal-
ysis in order to determine the bounds on the overheads and the
tradeoff between richness of the channel family and the rate, for

a finite . A further discussion on this subject is to appear in a
follow-up paper.
As we noted in Section VI-D the bounds we currently have

for the rate-adaptive scheme, especially in the continuous case
are rather loose. The main reasons are given below. One reason
is the fixed offset in the correlation factor in Lemma 6, which
limits the maximum rate when , as visible in Fig. 3. Note
that for , since this leads to for all rateless blocks,
the scheme described in Subsection V-B would deliver a rate of
, which is much higher than the lower bound. Another reason

is the use of the union bound in Subsection VI-A3 and in smaller
extent in the proof of Lemma 6. Also, the intuitively appealing
likely convexity property does not take into account the fact
that the empirical mutual information over the blocks are almost
equal, and may insert an additional loss in the bound. Alterna-
tive techniques that enable tighter bounds are to be presented in
a follow up paper which is currently in preparation.
Since rate can be traded off for error probability, a related

question is the error exponent, and the probability . The
scheme we described does not attempt to attain a good error
exponent, specifically, since the block of channel uses is
broken into multiple smaller blocks. Note, however, that for
rate adaptive schemes with feedback a good error exponent
does not necessarily relate to the capability of sending a mes-
sage with small probability of error, but rather to the capability
to detect the errors (see Burnashev’s error exponent and the
three phase scheme achieving it [13], [11, IV.B]).

C. Upper Bounds

In this paper we focused on achievable rates and did not show
a converse. An almost obvious statement is that any continuous
rate function which depends only on the zero-order empirical
statistics/correlation (respectively) cannot exceed uniformly the
rate functions of Theorems 3, 4 respectively with vanishing
error probability as , since otherwise it would be pos-
sible to achieve rates above the channel capacity of a memory-
less channel. A further discussion on this subject is to appear in
a follow-up paper.

X. CONCLUSION

We examined achievable transmission rates for channels with
an unspecified model, and focused on rates determined by a
channel’s a-posteriori empirical behavior, and specifically on
rate functions which are determined by the zero-order empir-
ical distribution. This communication approach does not require
a-priori specification of the channel model. The main result is
that for discrete channels the empirical mutual information be-
tween the input and output sequences is attainable for any output
sequence using feedback and common randomness, and for con-
tinuous real valued channels an effective “Gaussian capacity”

can be attained, while adapting the transmission
rate to guarantee a prescribed error probability.
The framework proposed here is not completely satisfying, in

twomain senses. One issue is that there is no “channel capacity”
in this framework (i.e., defining the maximum possible rate of
communication is tricky), and another is that to complete the
framework we need to fix an input distribution, which is not
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TABLE III
PARAMETERS OF THE ADAPTIVE RATE SCHEME USED FOR FIG. 3

tuned to the channel. Although onemay not be fully comfortable
with this framework there is no question about the reality of the
channel model itself, since the assumptions on the channel are
minimized. In the traditional way of posing the communication
problem, these issues are avoided, but at a price of assuming
a statistical model for the channel, whose relation to the true
channel may be questionable.
The current framework suggests a new viewpoint on the de-

sign of communication systems. The classical point of view first
assumes a channel model and then devises a communication
system optimized for it. Here we take the inverse direction: we
devise a versatile, but not necessarily optimal, communication
system without assumptions on the channel. Following these re-
sults, the individual channel approach becomes a very natural
starting point for determining achievable rates for various prob-
abilistic and arbitrary models (AVC-s, channels with an indi-
vidual noise sequence, probabilistic models, compound chan-
nels) under the realm of randomized encoders, since the achiev-
able rates for these models follow easily from the achievable
rates for specific sequences, and the law of large numbers.

APPENDIX

A. Parameters of the Adaptive Rate Scheme Used for Fig. 3

Table III lists two sets of parameters for the continuous
alphabet adaptive rate scheme. The first set was used for the
curves in Fig. 3, and the second set shows the convergence of

, for higher values of . Note that the values of are
extremely high, and this is due to the looseness of the bounds
used in the continuous case, specifically the constant offset
in the correlation factor due to Lemma 6 and the error exponent
in this lemma.

B. Proof of Lemma 1

The proof is a rather standard calculation using the method
of types. We use Csiszár’s notations [10]. We divide the se-
quences according to their joint type . The type is
defined by the probability distribution . For
notational purposes we define the dummy random variables

and as the marginal and
conditional distributions resulting from . The conditional
type [10] is defined as .
The empirical mutual information of sequences in the
type is simply . Define

. Since all

sequences in the conditional type have the same (marginal)
type, we can write:

(88)

where (a) is due to [10, (II.1)], (b) results from (89) below
which is an extension of (II.4) there to conditional types (and
is a stronger version of Lemma II.3), based on the fact that in
the conditional type the values of over the

indices for which have empirical distribution
and therefore the number of such sequences is limited to

, hence:

(89)

(c) is based on bounding the number of types [15, The-
orem 11.1.1], and the fact that in the minimization region

and therefore the result of
the minimum is at least .
Note that for the proof of Theorem 1 we do not need the strict

inequalities and equality in the error exponent would be suffi-
cient, however these will be useful later for the rateless coding.
An explanation for the fact that the bound does not depend on
can be obtained by showing that can be
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bounded for each type of separately. I.e. if is drawn uni-
formly over the type the probability of is:

(90)

where
and since drawing is equivalent

to first drawing the type of and then drawing uniformly over
the type, the bound holds when .

C. Proof of Lemma 2

For random variables and where is continuous (not
necessarily Gaussian) we have the following bound on the con-
ditional differential entropy ( denotes a dummy variable with
the same distribution as and used for notational purposes):

(91)

where the (a) is based on Gaussian bound for entropy and (b)
on concavity of the function (see also [15, (17.24)]) (c) is
based on and is similar to
the assertion that which is the MMSE estimation
error is not worse than the LMMSE estimation error (except our
disregard for the mean).
Therefore for a Gaussian :

(92)

Proof of Corollary 2: Equality (a) holds only if is
Gaussian for every value of , (b) holds if has fixed variance
conditioned on every , and (c) if

, therefore it results in
which implies are jointly Gaussian (easy to check by cal-
culating the pdf).

Note that if are jointly Gaussian then can be repre-
sented as a result of an additive white Gaussian noise channel
(AWGN) with gain operating on :

(93)

To show the validity of Remark 3 consider
, in which case and , therefore the

assertion doesn’t hold.

D. Proof of Lemma 4

Write the empirical correlation as

(94)

From the expression above we can infer that does not depend
on the amplitude of and but only on their direction. Since
is isotropically distributed, the result does not depend on the

direction of (unless in which case it is trivially correct),
therefore it is independent of and we can conveniently choose

. To put the claim above more formally, for
any unitary matrix we can write:

(95)

Since is Gaussian, has the same distribution of , thus
the probability remains unchanged if we remove from

the left side and remain with . For
, we may choose the unitary matrix whose first row

is and the other rows complete it to an orthonormal basis
of the linear space . Then and

therefore . Thus the distribution of

equals the distribution of

. Assuming without loss of generality that we
have:

(96)
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Fig. 6. A geometric interpretation of Lemma 4.

where we used the rough upper bound of the Gaussian error
function , and
denotes the pdf of a Gaussian i.i.d. vector.

Discussion: A result close to Lemma 4 can be obtained ge-
ometrically since is related to the solid angle of
the cone . See Fig. 6. Since is isotropically
distributed, the probability to have equals the relative
surface determined by vectors having on the unit -ball
(termed the solid angle). Since is the cosine of the angle be-
tween and , the points where generate a cone with
inner angle where and their intersection with
the unit -ball is a spherical cap (dome). We can obtain a sim-
ilar bound as above using geometrical considerations. Write the
volume of an dimensional ball of radius as where
is a fixed factor [33], and accordingly the sur-
face of an dimensional ball is (the derivative) , then
the relative surface of the spherical cap can be computed by in-
tegrating the surfaces of the dimensional balls with radius

that have a fixed angle with respect to , and can be
bounded as follows:

(97)

where the asymptotic ratio is based on [34, (99)].
Compare the result with Lemma 4. An interesting observation
is that the assumption of Gaussian distribution is not necessary
and this bound is true for all isotopical distributions.

E. Proof of Lemma 6

We denote as the sub-vectors over (i.e.,
), their length by and

their relative length by . We are interested to find
a subset of with bounded probability such that outside
the set for any . Consider the following
inequality:

(98)

where (a) is from Cauchy-Swartz inequality and (b) is since
and is

attained for . Both inequalities are tight
in the sense that for each there is a sequence (equivalent
to choosing ) that meets them in equality, provided
that . Dividing by we have that

(99)

where the RHS depends only on and should be bounded by
. Thus the minimal set is:

(100)

The set is minimal in the sense that none of its elements can be
removed while meeting the conditions of the lemma. We would
like to bound the probability of . The result of
is a partial sum of , and since negative are not summed, it
is easy to see this is the maximal partial sum, i.e., we can write
this sum alternatively as

(101)

where denotes all non empty sub-sets of
, and its size is . Therefore from the union bound

we have:

(102)
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To bound the above probability we use the following bound
on the probability for some coefficients
:

Lemma 7: Let , and defined as above.
For coefficients with and
where , we have

(103)

where

(104)

The Lemma is proven at the end of this subsection. Now we
apply the bound to the events in (102):

We have:

(105)

and , therefore for we have
and by Lemma 7:

(106)

where

(107)

From (102) we have:

(108)

which proves the lemma. Note that different bounds can be ob-
tained by applying the bound on smaller sets in
and requiring that the sum over each set will be bounded by

(as an example we could bound each sepa-
rately by ), however this bound is most suitable for our pur-
pose since when the element becomes negligible.

Proof of Lemma 7: We assume without loss of generality
that . For a Gaussian r.v. and
we have:

(109)

For coefficients with and
a positive constant of our choice, and

we have, using the Chernoff bounding technique:

(110)

where (a) is based on the second order Tailor series of
around with some and (b) is

since . For simplicity we choose a sub-optimal
(which is obtained by assuming small and opti-

mizing the bound with respect to ignoring the denominator)
and obtain:

(111)

To simplify the bound, we make a further assumption that
therefore:

(112)
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Combining (110), (111) and (112) we have the following bound:
for ,

(113)

where . Note that the bound is true for any
.
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